2017年8月6日日曜日

リトルボーイ86

リトルボーイ英語: Little Boy)とは、第二次世界大戦においてアメリカ軍広島市に投下した原子爆弾ガンバレル型[1]ウラニウム活性実弾 L11)のコードネームである。いわゆる「広島原爆」「広島型原爆」である。
これは、人類史上初めて実戦で使用された核兵器である[2]原子力災害核実験原発事故など)や自然災害地震台風隕石衝突など)の規模を表記する際に、このリトルボーイを基準に「広島原爆n個分」と換算されることもある。

目次

概要

リトルボーイの構造。赤がウラン235。
全長3.12m、最大直径0.75m、総重量約5t。番号はMk.1。ウラン235を用いており、二分されたパイプの両端に置かれたウラン235の塊の一方を火薬の爆発力でもう一方のウラン塊にぶつけ、臨界量を超過させて起爆するガンバレル型である。
積載されたウラン140ポンド(約65kg)のうち、1.38%(約876.3g)が核分裂反応を起こしたと推定されている。[3]核出力TNT換算で約15kt(5.5 × 1013ジュール)である。

開発

ガンバレル型の原子爆弾が「どのように設計されたのか」は、未だに軍事機密扱いであり、情報公開されていない。
一部に、リトルボーイは ナチス・ドイツ製、もしくはその複写であったのではないか、とする説がある。この説の説明として、アメリカがガンバレル型の開発をした経緯がなく、当初よりプルトニウムを用いた爆縮式(インプロージョン型)の実験を行っていた、とされることがある。
しかし、アメリカ合衆国が研究していた、原子爆弾の当初構想は「ガンバレル型」であり、原子爆弾の研究を行っていた世界のどの国においても、構造が比較的簡易であり、インプロージョン型よりも基本部分の製造が容易であるガンバレル型の研究が行われていた。実際に米国ではプルトニウム239を材料としたガンバレル型のシンマン(Mark 2)として開発が行われていた。ただしMark2の開発は難航し、実際に中断・放棄されている。
米国および人類初の核爆弾稼働実験である「トリニティ実験」において使用された爆弾(ガジェット)もインプロージョン型である。では理論構造が単純であるとはいえ、取り扱いや安全性に疑問があり、実験実績のないガンバレル型を、なぜ投下第一号としたのか等の不明点が残るが、これもまた機密扱いであり明らかになっていない。リトルボーイ使用の3日後に長崎に投下されたファットマンは、トリニティ実験と同様の「プルトニウムを使用したインプロージョン型」である。
1943年頃、プルトニウムの過早反応が認識され、爆縮方式の設計がスタートする。1944年7月には、ほぼ全面的にプルトニウム爆縮式に開発努力は移行するが、トリニティ実験までは爆発成功の確信がなく、すでに爆弾設計としては完了しウラニウムの濃縮の進捗を待つのみとなっていたガンバレル型が予備として計画されたとされている。
大量のウラニウムを必要とするガンバレル型のリトルボーイの製造において、終戦間際にドイツ国内や潜水艦から押収されたウラニウムは使われなかったとする根拠はないが、量的には1939年の時点で カタンガ州(コンゴ)からおよそ一千トンが搬入されたウラニウム鉱石が原料の大部分を占めていた。

実験

1945年当時、この方式の検証のための核実験は行われていない。核実験による検証を経たのは、プルトニウムを使った爆縮方式のものが1945年7月16日、アメリカニューメキシコ州アラモゴード近郊のアラモゴード爆撃試験場(現:ホワイトサンズ・ミサイル実験場内「トリニティ・サイト」)で行われたのみである。これは一般には、既にウラン235を使った核分裂試験が原子炉内で行われていた為に核爆発を伴う検証そのものが不要であったとされているが、実際はテストを行うことで高濃縮ウランが不足し、この方式の原子爆弾の戦線への投入に遅れが生じることを、アメリカ軍が嫌ったというのが真相のようである[4]

安全性

ガンバレル型の原子爆弾は、安全性に大きな問題があるため、アメリカ合衆国で作られなくなった。完成したガンバレル型の原子爆弾は、推進薬に点火すると、必ず核爆発を起こしてしまうため、フェイルセーフが存在しない。
そのため、爆弾を搭載したB-29が墜落したり、何かのミスで投下前に推進薬が点火したりするなど、万が一の場合に備え、爆撃機に兵器係として原爆の技術者を同乗させ、その者が投下の前に手作業で砲身内に推進薬(コルダイト火薬)を詰めこむという安全対策を取ったほどである。
たとえ推進薬が無くとも、墜落の衝撃によって砲弾部が標的部に突入すれば、核爆発が起きる可能性が十分に高く、海中に墜落すれば、爆弾内に流入した水が減速材として働き、臨界状態になる可能性があった。このため海に落下すれば、周囲一帯を「危険地域」として閉鎖せざるをえなくなる。これらの危険性を排除できるだけの安全装置の開発は不可能であるとされ、ガンバレル型自体が開発中止になる原因となった。

経緯

焼失面積13,200,000m2、死者118,661人、負傷者82,807人、全焼全壊計61,820棟の被害をもたらした。爆心地の近くにあった広島県産業奨励館は、現在原爆ドームとして世界文化遺産に登録されている。
(原爆被害の詳細は広島市への原子爆弾投下を参照)

2017年8月3日木曜日

テラーウラム放射圧力法

放射圧力法

放射圧力法は、密閉された容器内で大量のX線光子が発生することで機能し、セカンダリーの核融合燃料を圧縮する。全体の大きさとプライマリーの特色として、2つの熱核爆弾が良く知られている。この一つはアイビー作戦の”マイク実験”であり、もう一つはB61型核爆弾のバリエーションである(巡航ミサイル用の)最新のW80型核弾頭である。マイク実験での放射圧力は7,300万バール(7.3テラパスカル)であったのに対し、W80では14億バール(140テラパスカル)にもなっている。 [9]

発泡剤プラズマ圧力法

発泡剤プラズマ圧力法は、チャック・ハンセンにより開発段階で提案されたもので、これは熱核兵器の容器内に充填する発泡剤に関する調査資料(現在は機密解除されている)を基にしている。
発泡剤を使用した熱核兵器の起爆構造は以下の様になる。
  1. プライマリー内のコアの周囲を囲んでいる高性能爆薬は、爆発すると核分裂燃料を臨界量まで圧縮し、核分裂連鎖反応を開始させる。
  2. プライマリーの核分裂によりX線が放射されるが、これは爆弾の容器部分により内側に反射され、ポリスチレンの発泡剤に放射される(X線の反射の意味については、下図を参照のこと)。
  3. X線を浴びた発泡剤は相転移を起こして高温のプラズマになり、これはセカンダリーに向かって行き”タンパー”を強力に圧縮し、”スパーク・プラグ”内で核分裂反応を始めさせる。
  4. プライマリー起源のプラズマ(外側)とスパーク・プラグ(内側)の両方から圧縮されることで、”重水素化リチウム”燃料は高温・高圧の熱核反応を起こす状態にまで加熱・圧縮される。また中性子の放射も受けることで、リチウム6の原子は2つの三重水素原子に分裂する。そして三重水素と重水素が核融合反応を始め、さらなる中性子と膨大な量のエネルギーを放射する。
  5. 核融合反応を始めた燃料は多量の高速中性子を発生し、これはウラン238で出来たタンパー、及び爆弾の容器に放射され、ウラン238は核分裂反応を始める(デザインによっては、全体の爆発エネルギーの約半分が、この核分裂反応によって発生する)。
これは完全な”核分裂-核融合-核分裂”反応となる。核分裂とは異なり、核融合は比較的”クリーン”な反応で、エネルギーは発生するが有害な放射性物質や多量の放射性降下物は発生させない。しかし(特に最後の)核分裂反応は、莫大な量の放射性降下物を発生させる。もしウラン製タンパーの材料をに変更し、最後の核分裂反応を起こさない様にすれば、核爆発の核出力は約半分になるが、放射性降下物は比較的少ない量に抑えることが出来る。
発泡剤プラズマ機構での起爆手順
A.起爆前の核弾頭:プライマリー(核分裂爆弾)が上側、セカンダリー(核融合燃料)が下側、両方ともポリスチレンの発泡剤により固定されている。
B.プライマリーで高性能爆薬が爆発し、プルトニウムの核が臨界量まで圧縮され核分裂反応が始まる。
C.プライマリーの核分裂はX線を放射し、X線は核弾頭容器の内側へ散乱し、ポリスチレンの発泡剤に放射される。
D.ポリスチレンの発泡剤はプラズマに相転移してセカンダリーを圧縮し、プルトニウム製のスパーク・プラグが核分裂を始める。
E.圧縮と加熱により、重水素化リチウム6の燃料は三重水素を生成し、核融合反応が始まる。中性子の放射はタンパーのウラン238の核分裂反応を起こさせ、火球の生成が始まる。
現在の発泡剤プラズマ圧縮法に対する技術的評価は、同様の高エネルギー物理学分野からの機密解除された分析結果に焦点が移っている。この分析によると、この様なプラズマによる圧縮法では放射性容器内での中性子の発生効率が低く、また発泡剤がプライマリーからのγ線とX線の吸収効果も低いことが知られている。プライマリーで発生したエネルギーの多くは、核弾頭容器の壁やタンパーの放射性物質に吸収されてしまう。この吸収されたエネルギーは、後述する”蒸発(アブレーション)”作用を起こさせると分析されている。
しかしながら、トリウムやウランの様な大きい原子量塩類を染み込ませたエアロゲル型材料は、プライマリーからのX線の高い吸収効果を発揮し、発泡剤のプラズマ圧力がセカンダリーを放射圧縮させることを可能にする。

タンパー・プッシャー蒸発圧力法

第3に提案された方法は、プライマリーによる圧縮機構がセカンダリーの外部層であるタンパー・プッシャー部や、重金属製の核融合燃料の容器に対し、強力なX線を放射しこれらを超高温にしてアブレーションさせる。これらの部分はセカンダリーの外側向けてに爆発的に膨張し、その反動でタンパーは内側へ凄まじい速度で押し込まれ、核融合燃料とスパーク・プラグ部分を強力に圧縮する。
蒸発機構による起爆の手順.
1.起爆前の核弾頭。上側にある階層状の球体がプライマリーの核分裂部である。下側にある円筒状の物体が、セカンダリーの核融合燃料である。
2.プライマリーで高性能爆薬が起爆され、核分裂性のコアが爆縮される。
3.プライマリーの核分裂反応が始まる。核の温度は数百万℃に上昇し、γ線と強力なX線が放射され、ホールラウムの内部、及びセカンダリーの容器とタンパーを加熱する。
4.プライマリーの核分裂反応は終了し、爆発が始まる。セカンダリーのプッシャー表面は高温になり、結果的に蒸発して膨張し、その反動でタンパー、核融合燃料、及び核分裂性のスパーク・プラグを内側に圧縮する。この結果、スパーク・プラグは核分裂反応を開始する。なおイラストには描かれていないが、セカンダリーの放射性容器も同時に蒸発し、外側に向けて膨張する(イラストを分かり易くするために除外している)。
5.セカンダリーの燃料が核融合反応を開始して、火球の生成が始まる。
重金属の蒸発による効果の概算は、比較的容易である。プライマリーが供給するエネルギーは、セカンダリーの容器全面に対して均等であり、各部分が熱平衡になるため、熱エネルギーによる効果を解析することが出来る。プライマリーが発生したエネルギーの殆どは、1つの光学的深度を持つX線によってタンパー・プッシャー外壁面に伝えられるので、その部分の温度を計算することが可能になる。外壁面が蒸発して膨張することによって発生する、タンパーの内側への移動速度は、基本的なニュートン力学により計算することが出来る。
この計算方法をアイビー作戦のマイク実験に適用すると、タンパーが蒸発して膨張力する速度は秒速290km(およそマッハ850)になり、内側への圧縮速度は秒速400km(およそマッハ1,180)になる(タンパー・プッシャーの75%が蒸発すると仮定した場合。これは最も効率が良くなる条件である)。これがW80核弾頭の場合には、ガスの膨張速度はおよそ秒速410km(マッハ1,210)、内側への圧縮速度は秒速570km(マッハ1,680)になる。タンパーの蒸発による圧力を計算すると、マイク実験では53億バール(530テラパスカル)、W80では640億バール(6.4ペタパスカル)になる[9]


ブースト型核分裂兵器89

ブースト型核分裂兵器

米国のW88核弾頭の構造予測図。これは、2ステージ型の核融合兵器であるが、第1段 (primary stage;上側の楕円形の部分) はブースト型核分裂爆弾である。"5.Boost Gas Cannister" が重水素 (Deuterium) ガスと三重水素 (Tritium) ガスのタンク。第1段のプルトニウム・コア (pit) の中空部に "Booster Gas" の表示がある。
ブースト型核分裂兵器: boosted fission weapon)または、ブースト型核分裂爆弾、あるいは強化原爆は、通常は少量の核融合物質を用いて余分な中性子を発生させ、核分裂の頻度を増加させることで、早期発火(predetonation、または未熟核爆発 (fizzle yield))を防ぐとともに核出力 (nuclear yield) を増強するタイプの核兵器(爆縮型核分裂兵器)を指す。
この方式による核分裂(そして核出力)の増強効果をブースト、そのためのメカニズムをブースターと呼ぶ。核融合反応を利用するが、それによる発生エネルギーの増加はごく僅か、恐らく1%程度であり[1]、その主な目的が核分裂反応の増強である点で水素爆弾などの核融合兵器とは異なる。
ブーストによる早期発火の防止は、原子炉級プルトニウム (reactor grade plutonium, RGPu) で核分裂兵器を製造する際の鍵となる技術でもある[2]。また、同量の核物質であれば、この技術を用いることにより、より大きな威力を得られるので、核弾頭の小型化には不可欠の技術とされる[3]
このブーストというアイデアは、1947年の秋から1949年の秋の間に、米国ロスアラモス国立研究所で初めて開発された[4]

長期内部被曝は猛毒性との通説に疑義を提起する資料

毒性

1945年以来、約10トンのプルトニウムが、核実験を通じて地球上に放出された。核実験による放射性降下物のため、既に世界中の人体中に1-2 pCi (0.037-0.074 Bq) のプルトニウムが含まれている[12]。また、核実験由来のプルトニウムが地表面の土壌に0.01-0.1 pCi/g (0.37-3.7 Bq/kg) 存在する[13]。このほか、原子力施設などの事故や、再処理工場からの排出[14]により、局地的な汚染が存在する。
プルトニウムの同位体は総て放射性である。このため、単体の金属プルトニウムならびにプルトニウム化合物は総て放射性物質である。化学毒性についてはウランに準ずると考えられている[15]。しかし、その化学毒性が現れるよりもはるかに少ない量で放射線障害が生じると予想されるため、化学毒性のみでプルトニウムの毒性を論ずることはできない[16][17]
プルトニウムの急性毒性による半数致死量は経口摂取で32 g、吸入摂取で13 mg[17][18]。長期的影響の観点では経口摂取で1150 mg、吸入摂取で0.26 mg(潜伏期間として15年以上)[19][20]である。また、プルトニウム239の年摂取限度(1 mSv/年)は、経口摂取で48 μg (11万 Bq) 、呼吸器への吸入では52 ng (120 Bq) である[21] プルトニウムは人類が初めて作り出した人工核種である[21]小出裕章は、α線源であるため放射線荷重係数が大きいこと、同じα線源である天然核種のウランなどと比べ半減期が短いため比放射能が高いこと、体内での代謝挙動(肺での不均等被曝は、発ガン性が極端に高くなる)の3点から「かつて人類が遭遇した物質のうちでも最高の毒性をもつ」と報告している[21]。プルトニウムの有害性は、体内に取り込んだ場合の内部被曝には特に留意すべきである。

体内摂取の経路と排出

プルトニウムを嚥下し消化管に入った場合、そのおよそ0.05 %程度が吸収され、残りは排泄される[22]。吸収された微量のプルトニウムは骨と肝臓にほぼ半々の割合で蓄積され、体外へは排出されにくい。生物学的半減期(体内総量が当初の半分になるまでの期間)はウランやラジウムと比べても非常に長く、一説には骨に50年程度、肝臓に20年程度と言われる[23][24]。放射線有害性は全てのα線源核種と同じであり、Puのみが特別というものでは無い。
最も有害な取り込み経路は、空気中に浮遊するプルトニウム化合物粒子の吸入である。気道から吸入された微粒子は、大部分が気道の粘液によって食道へ送り出されるが、残り(4分の1程度)が肺に沈着する。沈着した粒子は肺に留まるか、胸のリンパ節に取り込まれるか、あるいは血管を経由して骨と肝臓に沈着する[19][20]。そのため、他のα線・β線放射物質による内部被曝と同様に、IARC より発癌性があると (Type1) 勧告されている。また、動物実験では発癌性が認められているが、人においてはプルトニウムが原因で発癌したと科学的に判断された例はまだない[17]。α線源であるため、ICRPが定める線量係数[25][26]では 239Pu の経口摂取で2.5 × 10-7、吸入摂取で1.2 × 10-4と定められ、131I(経口摂取2.2 × 10-8)や 137Cs(経口摂取1.3 × 10-8)よりも1 Bq当たりの人体への影響が大きいと想定されている(一般には、α線はβ線よりも20倍の危険性があるとされている)。

長期内部被曝は猛毒性との通説に疑義を提起する資料

ATOMICA によると、米国での1974年までのデータとして、最大許容身体負荷量 (1.5kBq) の10-50 %摂取した例が1155例、同50 %以上が158例ある。このうち代表的な2例(世界大戦における原爆製造工場、冷戦期の兵器工場火災、でのPu含有ガス吸引)において、24年経過後で肺ガン『致死』は1名、42年経過後の『発症』では肺ガン3例と骨肉腫1例であった。これは被曝のない通常のグループよりも発生率が低い。ただ発症までの潜伏期が40-50年と長年であり、調査対象者も高齢化しており、疑わしい疾病を発症してもプルトニウムを病原と断定しにくいのも事実である。[20][27][28]